
Journal of Statistical Physics, VoL 43, Nos. 3/4, 1986 

Diffusion with Random Traps: Transient 
One-Dimensional Kinetics in a Linear Potential 

N o a m  Agmon I 

Received August 21, 1985, final December 23, 1985 

The problem of one-dimensional diffusion with random traps is solved without 
and with a constant field of force. Using an eigenvalue expansion for long times 
and the method of images for short times we give an exact, straightforward 
solution for the time dependence of the mean survival probability and the mean 
probability density for returning to the origin. Using the backward equation 
approach, we determine the mean survival time and the mean residence time 
density at the origin. We comment on the relation between these solutions and 
those for one-dimensional diffusion with random reflectors. 

KEY WORDS: Diffusion; random traps; random reflectors; survival 
probability; mean survival, residence and relaxation times; method of images. 

1. I N T R O D U C T I O N  

There  has recent ly  been cons iderab le  interest  in the t empora l  p roper t ies  of 
a r a n d o m  walk or  a diffusion process  a m o n g  a r a n d o m  d i s t r ibu t ion  of 
s t a t ionary  s inksJ  1 20) The ma in  proper t ies  inves t iga ted  were (1 17) ( a ) t h e  

survival  p robab i l i ty ,  (b) the p robab i l i t y  dens i ty  for re turn ing  to the origin,  
(c) the mean  a b s o r p t i o n  time, (18-2~ and ( d ) t h e  mean  square  deviat ion.  (3'12) 

The exper imenta l  significance of these proper t ies ,  especial ly for kinetic  
processes in r a n d o m  mater ia ls ,  is discussed in the l i terature.  ~1-2~ 

The p rob l em of  de te rmin ing  the survival  p robab i l i t y  over  the whole  
t ime regime can be tack led  ana ly t ica l ly  only for the one -d imens iona l  
p roblem.  (11-13) The  solut ions  given in the l i te ra ture  are not  a lways  the mos t  
s t ra igh t forward  or  comple te  and  tend  to put  mos t  emphas is  on the 
a sympto t i c  long- t ime behavior .  In  par t icu la r ,  the fact tha t  for shor t  t imes 
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the "method of images ''(21) is the most natural route to the solution has not 
been appreciated. We show (Sec. 2) that only a few terms from the ensuing 
function series are needed to smoothly connect the solution with the first 
few terms from the eigenfunction expansion, which converges rapidly for 
long times. 

The case of biased random walk (or diffusion in an external potential) 
has been treated asymptotically ~7b'15c) to show that bias restores exponen- 
tially in the temporal decay. Reference l l(c) obtained the full one-dimen- 
sional solution for the survival probability in a very tedious way, by 
inverting the Laplace transform. We generalize (Sec. 3) in a straightforward 
manner the free diffusion case to that of a constant field of force (linear 
potential) in one dimension to obtain both short- and long-time solutions. 
We also determine, by the backward equation approach, the mean survival 
time and the mean residence time at the origin. 

Finally (Sec. 4) we discuss the relaxation process for diffusion with 
random reflectors. The mean return (to the origin) probability density and 
relaxation time are simply related to corresponding properties of diffusion 
with random traps. 

The results below are for the continuous diffusion model, which serves 
as a good approximation to the discrete random walk problem for low trap 
concentration. (Of course, it is exact for all concentrations in the con- 
tinuous case). For high trap concentration the discrete problem would have 
to be solved analogously or by other methods. 

2. FREE D I F F U S I O N  

The diffusion equation to be solved is 

Op/~t = ~ p / ~ x  ~ (1) 

where x is a one-dimensional coordinate, t is time multiplied by a diffusion 
constant D, and p is the probability density. For infinitely deep traps no 
density can cross from one side of a trapping point to the other. Hence, the 
line is divided to intervals of length l, which is a randomly distributed 
parameter. The problem is reduced to obtaining the appropriate average of 
the solution for diffusion in an interval with two absorbing boundaries 

p(O, t) = p(l, t) = o (2) 

As an initial condition we take a point source at Xo 

p(x ,  0 ) = ~ ( X - X o )  (3) 
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and denote the solution obtained under these conditions by p(x, t l Xo). It is 
the transition probability density for transitions from x0 to x in a time 
interval t/D. 

Given the one-dimensional solution with two absorbing boundaries, 
p(x, t[Xo), one can (i)sum over x and average uniformly over xo to obtain 
the survival probability Q(t) 

Q(t)=1-1 dxo dx p(x, tlxo) (4) 

or (ii) set X=Xo and average to obtain the probability density P(t) for 
returning to the origin 

P(t)=1-1 p(x, tlx) dx (5) 

The desired result for random traps is reached by averaging these 
solutions with respect to the weight w(l) for an interval of length l 

;5 ( Q )  = Q(t) w(1) dl (6a) 

( P )  = P(t) w(l) dl (6b) 

The probability of finding an interval of length l, formed by a random dis- 
tribution of points on the line, is just the one-dimensional nearest-neighbor 
distribution ce c~, where c is the trap concentration (number of point traps 
per unit length). Since the uniform distribution of starting points weighs 
each interval by its length l, we multiply the nearest-neighbor distribution 
by l and normalize to obtain (12) 

w(l)  = c2le - c ~  (7) 

The solution of (1) under conditions (2) and (3) is an infinite sum 
which can be written in two ways. The first is an eigenfunction expansion, 
isomorphic to that of a "particle in a box" in quantum mechanics 

2 ~ sin sin exp (8) p(x, t l x o ) = 7  F J 
j = l  

This solution converges rapidly for large t. As t --* oo only the lowest eigen- 
value, j =  1, contributes. For shorter times additional terms are needed. 
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Fig. 1. The point sources on the line for the solution by the method of images, (9), for free 
diffusion in the interval (0, l) and an initial delta function at x0. Full circles: positive sources 
[first term in (9)]; open circles: negative sources (second term). The contributions from these 
sources are collected in the order 0, 1, 2,... shown, according to their proximity to the initial 
excitation. 

The second solution is obtained by the "method of images, ''(21) with 
which one is well-acquainted in electrostatics 

1 {exp[ 1 P(X' t [ x~ - 2 ~ n t  s=~oo 4t 

- e x p [  (X+Xo+ 2j1)2] } 
- 4 t  ( 9 )  

(The initial density is concentrated at the points shown in Fig. 1). This 
solution converges rapidly for small t. Equations (8) and (9) are connected 
by the "Poisson summation formula. ''(21) 
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Convergence of the serial solution (16) for two different initial conditions Xo. The first 
five partial sums are shown. 
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When t ~ 0 the effect of the boundaries is not felt yet, so the initial 
delta function at Xo widens just as if it were free diffusion. This is the term 
j = 0  in the first exponential. As time advances and probability density 
reaches the boundaries, it is nullified there by the two negative point sour- 
ces located initially at -Xo and 2 l - x o  (see Fig. 1). These are the terms 
j = 0 and j = - 1  in the second exponential. Later these densities reach the 
further boundaries and are nullified there by the positive sources located 
initially at _+2l+xo, which are the terms j =  +1 in the first exponential, 
and so on. This is the order in which we will collect the terms in the short 
time expansions. 

Following this preliminary background, we now give the relevant 
solutions for free diffusion. 

Survival P r o b a b i l i t y  

For long times we find, by inserting (8) in (4), that 

/ = 0 

(10) 

Note that the even terms in (8) have disappeared (the integral of a sine 
over a multiple of 27: is zero). Subsequently, using (7) one has 

( Q )  = - ~  (2j+ 1 exp - 12 c[ l d l  (11) 
j = O  

It is possible (~'11~ to perform the summation analytically as in (52b) or, 
defining v j -  = [,(2j+ 1)2~2t /c]  1/3 l and c~j- [-c2(2j+ 1)2~2t] 1/3 to rewrite 
(11) as 

(Q) =8(c2t/Tr) 2/3 ~ (2j+ 1) 2/3foVeXp[--~i(tgj-b/)j-2)] vjdlJj (12) 
j = 0  

The complete asymptotic expansion of the integral (for the dominant 
j =  0 term) is obtained in Ref. 13b 

( Q ) ~ 1 6 c ( t / 3 r c ) l / 2 e x p  - z 1+ a ~ z  (13) 
k = l  

with z - ( 2 ~ 2 c 2 t )  1/3. The first term in the expansion is the steepest descent 
approximation, as given in Ref. 11, (the erratum to) Ref. 9(a), and Eq. (13) 
of Ref. 12 [-after correcting the printing errors therein. In the discrete case 
discussed there c is replaced by - ln (1  - c ) ] .  The first few coefficients in the 
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expansion are a1=17/18, a2=205/648, a3 = -3115/34992, and a4= 
137305/2519424. This agrees with the asymptotic expansion for the survival 
probability obtained in Ref. 13(a) by a different route. 

Considering next the short time solution, by integral (A1) of Appen- 
dix A and (9), one gets 

Q(tLXo)- p(x, tlxo) dx 

/Xo + 2jr, /Xo + (2j- 1)() 
' i - -  =2 ,=-oo  ~ 2  2, , /7  

- erf (Xo + (2j + 1 
27 ")J (14) 

where erf(x) is the error function. As discussed following (9), we collect the 
terms in the formal series (14) according to their importance for short-time 
convergence. This leads to the following finite-sum approximation 

1 [erf(�89 t -  1/2) ..}_ erf(lxl t -  1/2)] (15) Qo(tlXo) = 

1 F e r f ( ( n -  1)/+Xo) 
Q " ( t l x ~ 1 7 6  ( - 1 ) " L  \ 2 - - ~  

+ . . . . .  erf - -  (16) erf ((n-2,,/71)l+ xl\) ~ 2 x f  7/nl+xo\)_ erf(nl+x~]\__~jj 

where Q is the limit of Qn as n -+ c~. Notice that this solution is invariant 
for interchanging Xo and X l = l - x o ,  as it should be. This solution is 
demonstrated in Fig. 2 for n = 0 to 4. 

We now calculate 

- c 2 "~1~ dl e '"-I" dxo Qn(tlXo) (17) <O. > 
~0 ~0 

Using the integral (A3) of Appendix A we find that 

(Qo > = f~(c) - e ~' erfc(c .,/7) (lSa) 

(Q~ > = (Qo)  + 2f1(c) - f2(c) (18b) 

(Q ,>=<Qn_l>+(-1 )n[ f~+l (C) -2 f , ( c )+f~  1(c)] (18c) 

where ( Q )  = lim. ~ ~ ( Q. >, 

fj(x) =_ j exp(x2t/j 2) erfc(x xf}-/j') (19) 

and erfc(x)= 1 -erf (x)  is the complementary error function. 
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Equation (18c) is the general solution for all n = 0, 1,... when we define 
f_l(X) - fo(x) = 0 and (Q -1 ) = 0. The necessary criterion for convergence, 
that the term fn + ~ - 2fn + f n -  1 decreases with n, holds because fn(x) ~ n as 
n --. oo. This term also vanishes for t ~ 0, since fn(0) = n, and the main con- 
tribution is from (Q0).  Equation (18c) can also be written as 

n 1 

( Q n ) = - 4  ~ (--1)Jfj(c)-~(--x)n[fn+l(C)--3fn(c)] 
/ = 1  

(20) 

The zero-order approximation, (18a), is just a nearest-neighbor 
approximation. The survival probability due to a nearest-neighbor static 
trap at distance Xo (we ignore the other traps) is easily obtainable by the 
method of images (21~ 

Q~(tlXo) = erf(lxo t -  1/2) (21) 

Averaging over the nearest-neighbor distribution, we find for t---, 0 

(Q),~c Q~(tlXo) e-'~~ (22) 

The nearest-neighbor approximation is the asymptotic solution for t--, 0, 
and a strict upper bound in any dimensionality, a fact not appreciated in 
the literature. 

The solution of the one-dimensional problem via ( t l )  and (18) is 
demonstrated in Fig. 3. The criterion for convergence is that the two 
solutions connect smoothly at intermediate times. We see from the left 
panel of Fig. 3(a) that when we take (Q2)  from (18) and the first two 
eigenvalues in (11) the connection is almost perfect (with one additional 
term the curves already overlap). It is seen that, for these short times the 
steepest-descent approximation [the zeroth term in (13)] grossly 
underestimates the exact integral (11). Hence the importance of the com- 
plete asymptotic expansion (13). 

The left panel of Fig. 3(a) also shows (line with circles) the short-time 
approximation (11 for the discrete random walk model (12'~4) 

< Q > exp (lnI1/clt) i 3) 
/ \~(1-c)/  A 

We see that (23) is somewhat better than our zero-order approximation 
(Qo) ,  but still a rather poor approximation for the exact result in this time 
regime. The right panel of Fig. 3(a) shows the decay of the survival 
probability for longer times. Fig. 3(b) shows it in a logarithmic scale. 
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Fig. 3. (a) Temporal decay of the survival probability for one-dimensional free diffusion with 
random traps at a concentration c=0.01. Curves denoted by 0, 1, 2 are the short-time 
solutions <Q0), (Q1) ,  and (Q2) ;  (18). Curves, denoted by a, b, etc., are the eigenvalue 
expansions, (11) with 1, 2,... eigenvalues. The line with circles is the short-time approximation, 
(23), that with tick marks is the steepest-descent approximation. Inclusion of three to four 
terms in the expansion (13), gives (13b) an adequate representation of the exact integral (line a) 
for t > 200. Short- and medium-time regimes are shown in the two panels. In the short-time 
regime numerical integration in (12) was performed using 750 points for v =0.05 to 17. For 
long times 500 points were used for v=0.1 to 10. (b)Same as (a) in a logarithmic (base 10) 
scale. 



Diffusion with Random Traps 545 

The Return Probabi l i ty  Density  

For long times we set X=Xo in (8) to give 

2 ~ (J_.~_) ( j2n2 ) 
p(x, t] x) = 7j~i.= sin 2 exp \ - -77- t 

Inserting in (5) and subsequently in (6b) one finds 

P(t) = 1-1 ~ exp(--j27r2t/l 2) 
j = l  

( P )  = c c 9 exp[ - c9(vi + v]-2)] dvj 
j = l  

(24) 

(25) 

(26) 

where ej and vj are defined as in (12). The complete asymptotic expansion 
(for j =  1) yields (13b) 

lJ2 ( 3 ) [  1 (P)~c~-- j - - )  exp - ~ z  1 +  ~ bkz -k (27) 
k = l  

with z-(2c27r2t) 1/3. The zeroth term is the steepest descent approximation, 
as given in the literature. (7a'1~) The additional three coefficients are (~3b) 
bl = 5/18, b2 = -35/648, and b3 = 665/34992. 

For short times we set x = Xo in (9) to give 

p(x, t]x) = ~ - - - ~  1 + 2  J=~ exp(--j212/t) -j=~_oo exp[-(x+jl)2/t] (28) 

For averaging over x as in (5) we use integral (A1) of appendix A. The 
term in the curly brackets there, when summed over all j from - o e  to oe, 
gives 2 eft(o~ ) = 2. Therefore 

P(t) = �89 -1/2 - 1-1 ] + (nt) -1/2 ~ exp(-j212/t) (29) 
1 =  1 

Finally, inserting into 
Gaussian terms is determined by completing to squares) 

2 ( P )  = (nt) - '/2 - c + c2t ~, j-2[(lrl) -'/2 - c(2j)-2 f2y(c)] 
j = l  

where f;(x) is given by (19). 

(6b) one finds (the Laplace transform of the 

(30) 
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Fig. 4. Temporal decay of the mean return-to-the-origin probability density, ( P ) ,  for one- 
dimensional free diffusion with random traps at a concentration c = 0.01. Logarithmic scale 
(base 10). Curves denoted by 1, 2,... are partial sums in (30). Curves denoted by a and b are 
for 1 and 2 eigenvalues in (26), integrated numerically (400 grid points for v = 0.1 to 10). The 
line with tick marks is the steepest-descent approximation. Inclusion of just one term in the 
expansion (27), gives (13b) an adequate approximation to the exact integral (line a). 

The convergence of the solutions in (26) and (30) is shown in Fig. 4, 
as well as the zeroth term in (27). This graph should be compared to Fig. 6 
of Ref. ll(b). Note however, that as a probability density ( P )  --+ oo (not 
to 1) as t--+0. 

First Passage Times 

The average survival time for free diffusion in an interval of length l 
with two absorbing boundaries 

=- Q(t)  dt (31) 

(the survival probability Q(t)  is defined in (4)) can determined from a 
direct integration of (10) 

8/2 l 2 
z=~-7 ~ ( 2 j + l )  4=12  (32) 

j ~O  

or, in the backward equation, approach (2z) by solving 

cl2~(xo)/clx~ = - 1 ( 3 3 )  
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for 

r(xo)-= dt & p(x, t lxo) (34) 

with absorbing boundary conditions at xo = 0 and l. The result is 

~(Xo) = ~Xo(t-  Xo) (35) 

Averaging over xo 

T = [-1 T(X0) dx~ = 1-2 (36) 

gives the same result as (32). The final stage is averaging with respect to 
the distribution w(l) of (7) 

( z ) =  r w(l) d l = � 8 9  (37) 

In the discrete case, the average number of steps to trapping, ( N ) ,  is given 
by(19) 

( N )  = (1 - c)/c 2 (38) 

After identifying z = N/2 we see that (37) is indeed a small concentration 
approximation to (38). 

It may be interesting to evaluate the mean residence time density at 
the origin, ( T ) .  This quantity relates to the return probability density ( P )  
just as ( z )  relates to the survival probability ( Q )  

fo ( z )  = ( Q )  dt (39a) 

;o -o ( T )  = ( P )  dt (39b) 

First we evaluate the mean residence time density (22b) 

T(X[Xo) = p(x,  tJXo) dt (40) 

for a segment of length l. It obeys (22b) 

02"c( x l xo)/Ox 2 = 02~( x l xo)/~x~ = o (41) 
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with the appropriate absorbing boundary conditions. The solution 

~ x ( l -  Xo), x < Xo 
I ~(x I Xo) = ~ X o ( l -  x),  x > Xo (42) 

evaluated at x = x0, is averaged over a uniform distribution in x0 

i~ l (43) T=_I 1 v ( x l x ) d x = - ~  

and finally over the random trap distribution to obtain 

< T > = e  2 r e  -~ l d l = ( 3 c )  -1 (44) 

The same result is obtained from the time integral of (26). 
Roughly speaking, if e is an infinitely small interval around the origin 

(so small that the probability ce ~~ of finding a trap in it is negligible) then 
e< T)  would be the average time spent in this interval. In the discrete case, 
if e is the distance between adjacent sites, 2e<T) estimates the average 
number of returns to the origin, which is therefore inversely proportional 
to c. 

Mean Square Deviat ion 

An asymptotic evaluation for large t is given at the end of Ref. 12. 

3. LINEAR POTENTIAL 

The diffusion equation to be solved is now 

0p a2P+2a~__~p x a e_2a x a e2aX p (45) 
at -fT~x ~ = - ~  

with the same boundary and initial conditions as in (2) and (3). In the dis- 
crete case, this is a biased random walk with jump probabilities W+ for 
transitions n --, n + 1 given by 

W+ = �89 -+a ~ �89 -t- a) (46) 

It is well-known that the transformation 

q(x,  t] Xo) = exp[a(x - Xo + at)]  p (x ,  t l Xo) (47) 
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reduces (45) to the free diffusion case, ~?q/& = ~2q/Ox2 with the same boun- 
dary and initial conditions. Therefore, the long- and short-time expansions 
of (8) and (9) should simply be multiplied by e x p [ - a ( x -  Xo + at)]. 

As a result, the average return probability density, ( P )  in (26), (27), 
and (30), should simply be multiplied by e -a2'. Asymptotically at large t, t 
wins over t 1/3 and the decay becomes exponential, irrespective of the value 
of a. For any x r  the free diffusion solution is multiplied also by 
e x p [ - a ( X - X o ) ] .  Hence the result for ( Q )  is not simply (Tb~ that of free 
diffusion multiplied by e a2t We shall now carry out the necessary 
integrations for evaluating the survival probability. 

Survival Probabi l i ty ,  Long Times 

Our starting point is (8). Using the result 

e ax sin dx = 
~0 

we find [cf. (4)] 

j r ~ l [ 1  - ( - 1) j e *;] 
a212 + j 2 7 z 2  (48) 

Q(t)  = 27tZe-~2' ~ j= [ 1 - ( - 1 ) / J ]  [ 1 - ( - 1)J e-~;] 
j 1 

x (a2l 2 + j2~z) -2  exp[ - f T z Z t / l  2 ] (49) 

This result is invariant for replacement of a by - a. For a = 0 it reduces to 
(10). For z =-al the normalization condition, Q(0)= 1, yields the following 
identity 

1=27C 2 ~ [ 1 - - ( - - l ) J e : ] [ l - - ( - - l ) J e - Z ] j z / ( 7 . 2 q - j 2 : g 2 )  2 (50)  
j=l  

valid for any real z. The special case z = 0 is a well-known sum (0.234.2 in 
Ref. 23(b)). The more general (50) is also derived in Appendix B by 
methods of complex analysis. The convergence of the series (49) and (50) 
deteriorates rapidly with increasing z. 

Inserting (49) in (6a) we finally get 

( Q ) = 4 r r 2 c 2  e ~;2, f ~  ~ [ l _ ( _ l ) J c o s h ( a l )  ] 
j = l  

• [j /(a2l 2 + j2rc2)]2 exp( - -  j 2 / r 2 t / 1 2  - -  cl)l dl (51) 

This result reduces for a = 0 to (11). It has been obtained in Ref. 1 l(c) by a 
more tedious route. By substituting x = l/j it is possible to transfer the sum- 
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mation variable j to the second exponent. Summation of the resulting 
geometrical series gives ulc) for la] < c 

( Q ) = 2T~2 C2 e _ a2t fo~ F e ax 2 e - ~x ] 
L eCi +--e,,X -F ~ -~ eVX + e ax 

X 
x (a2x 2 + ~2)2 exp(-lr2t /x 2) dx (52) 

Note that (52) is invariant for replacement of a by - a ,  as it should be, and 
its asymptotic behavior for large t is e-"2'. 

When la[/> c: (i) it is not permissible to change the order of sum- 
mation and integration in (51), (ii) the geometric series does not converge, 
and (iii) analytic continuation of (52) in the complex a-plane is probably 
not possible. The asymptotic behavior in this case is worked out in 
Ref. 1 lc. 

Survival Probability, Short Times 

We shall first integrate p(x, t[Xo) over x to get Q(t[Xo) then average 
over Xo and I. In the first step, use of Eq. (7.4.32) in Ref. 23(a) gives 

Q(tlxo) - e -~ [~ e-a~x- XO~pS(x ' t l Xo) dx 
o(3 

=�89 ~ e2~J'{erf[(�89189 + a t +  yl)/x/~] 
j ~  - o o  

+ e 2ax~ erf[(�89 + at + jl) /x/~ ] 

- e 2ax~ eft[ (�89 + II + at + j l) /x/~ ] } (53) 

pf(x, t lXo) is the solution for free diffusion, as given in (9), and xl - l -  Xo. 
To recall the order in which the terms in (53) should be collected [see dis- 
cussion following (9)], we rewrite it as finite sum approximations 

Qo(tl Xo)= �89189 x/ / t)+ erf(�89 i x / - / +  a x//-;)l (54a) 

Ql(tlxo) = Qo(tlXo) 

+ �89176189 + a x /~)+ e-2~, e r f ( � 8 9  - a ,,/~) 

- eft[�89 Xo)/x/t  + a x/7] 

- e 2"Zerf[�89 x~) / x f~ -  a x/~]  } (54b) 
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Q2(tjXo) = Ql(ttXo) 

- �89 -2"' eft[�89 Xo)/x/- t-  a x / t ]  

+ e 2"' e f t [ l ( /+  x, )/x/-; + a x /~]  

- e-2~, erf[�89 Xo)/x/7 - a ~ / t ]  

- e 2a' erf[�89 + x a)/x//-; + a ,,/-; ] } 

I n  the second step we wish to e v a l u a t e  

(Q~}=c2 ~ dle-CZ fl dxoQ.(ttXo) 

(54c) 

(55) 

Using the integrals of Appendix A we find 

1 - -  a2t <Qo} =~e [ f l ( c + a ) + f ~ ( c - a ) ]  

[ ( Q I > -  ( Q o > ]  e ~ 2 ~ -  c c 
c + 2 a f l ( c + a ) + c - - s  

(56a) 

C 2 
c2 _ 4a 2 f 2( c ) (56b) 

A(c + a) + ~ f l ( c -  a) 

L \ U  1 - ~ 1 - /  

-t- ~ f3(c--a)q- ~ f3(c+a) 

(56c) 

where f j (x ) i s  defined in (19). 
The general solution can be written as follows: For odd n 

[<Q~}-<Q~ 1 } ] c  2e"2 t=--[c2- - (n- -1)2a2]- l fn  i(c) 

-1- [C ~- (f/ -~ 1 ) a ]  - l [ c  - -  (n -- 1 )a] -~ f , ( c  + a) 

+ [ c - - ( n + l ) a ]  l [ c + ( n - - 1 ) a ] - l f , , ( c - - a )  

- -  [c 2 -  (n + 1) 2a 2] - l f , + l ( c )  (57a) 
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and for even n 

2 [ ( Q n ) -  (Qn 1)]  c-2ea2' 

- - ( c+na) -2 f ,_ l ( c+a)+(c -na)  2f~_l(c-a)  

- 2 [ ( c + n a )  2+(c-na)  2]fn(c ) 

+ (c-na)-2 f~+l(c+a)+(c+na)-2fn+l(c-a)  (57b) 

Several remarks are appropriate: (a) (57) can be made valid for all 
n = 0 ,  1,... by defining f _ l ( x ) = 0  and ( Q  1 ) = 0 .  (b) It is invariant for 
replacement of a by - a ,  as it should be. (c)I t  reduces to (18c) for a =  0. 
(d)I t  is evidently not valid for c =  +_2na, but since it is valid in any 
proximity of these points, we will not give the special form valid at these 
exact values. 

The solution by (51) and (57) is shown in Fig. 5. It converges nicely 
with just a few terms. We notice that for larger bias, as determined by the 
parameter a (compare with Fig. 3): (a) the decay becomes faster, due to the 
larger drift term and (b) the solution by the method of images converges 
faster, while the eigenvalue expansion, (51), converges much slower. The 
reason is physically clear: The larger the drift term, a, the faster an initial 
delta function moves downhill to its fatal destiny at the absorbing boun- 
dary, and the less it widens by diffusion, almost retaining its initial shape. 
Such a function is, of course, very poorly described by a Fourier expansion, 
and very nicely as a Gaussian. 

First Passage Times 

Let us use the methods of Ref. 22. ~(Xo) of (34) obeys (22a~ (instead of 
(33)) 

e2ax~ ~ o  e 2axo ar(Xo) ~Xo = - 1  (58) 

with absorbing boundary conditions z (0 )=  z(1)= 0. The solution is 

2a(e 2al- 1) r(xo) = xo(e 2at- 1 ) - l(e 2"x~ - 1) (59) 

Averaging over Xo gives 

2al'c = l ( l -  a 1)/2 + 12/(e 2a'- 1) (60) 
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t / l O 0 0  

Fig. 5. (a) Same as in Fig. 3a, but in a constant field of force with a = 7.5.10 -3. Thick 
curves, denoted by 0, 1, 2 ..... are the short-time solution (Q0) ,  (QI),-.. ,  of (56). Thin dashed 
curves, denoted by a, b ..... are the long-time solution (51) with 1, 2,.., eigenvalues. [When a 
new variable v is defined as in (12), the range of the numerical integration is similar to Fig. 3]. 
(b) Same as (a) in a logarithmic (base 10) scale. Numerical instabilities at tong time are due to 
single-precision evaluation of error functions. (Double-precision arithmetic is needed for 
longer times). 

These reduce to (35) and (36) by expanding the exponential terms up to 
second order for (59) and up to third order in (60). Finally one has 

2 a ( r ) = c  1--(2a) 1+/72  e-J(e2al--1) ll2dl (61) 

The same result has been obtained in Eq. (7") of Ref. l l(c)  by a different 
route. It is demonstrated in Fig. 6 together with the a---0 limit, (37). Note 
that the time integral of (52) leads to a more complicated-looking integral. 

822/43/3-&11 
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Fig. 6. Mean survival time for one-dimensional diffusion with random traps at a concen- 
tration c = 0.01. Thick upper line = free diffusion (37). Thin lines below are for a = 1.5.10 2m, 
m= 1 - 6  (top to bottom), in (61). Numerical integration in (61) was performed using 600 
grid points for 0.1 ~< 1-r 120. 

~(xl x0) of  (40) obeys (22b) [ instead of  (41)]  

0 e 2 a x  (~ 
a-x -~x eZ"Xr(x lx~  = 0 (62a) 

a 
- - e  -z"~~ z ( x l x 0 ) = 0  (62b) 
c~x0 0x0 

again, with absorbing boundary  condit ions 

v(01Xo)  = ~(l l  Xo) = 4 x 1 0 )  = r ( x  I l) = 0 (63) 

The solution is 

~(e2a'-e2aXO)( 1 - e-2ax), x < x  o 
2a(e  2~ l -  1) ~(XlXo)= [ ( e 2 a X 0  1) (eZa( j_x)  1), x > x  o (64) 

where the factor 2a(e  2a t -  1) has been determined from the condit ion that 
~ r(xl  Xo) d x  coincides with Z(Xo) of (59), which in turn is a consequence of 
the normal izat ion of  p ( x ,  t l xo). 

F r o m  (64) we get [cf. (43) and (44)] 

2 a T =  coth(al)  - ( a l ) -  1 

2 a ( T )  = e - y  c o t h ( a y / c )  y dy  - c/a 

(65) 

(66) 
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The integrals in (61) and (66) can also be written as ~ functions. (23) When 
e = a the integral in (66) can be performed analytically, to yield 7r2/4- 1. 
The solution (66) is shown in Fig. 7 together with the a = 0 limit (44). 

At first, the qualitative difference between the two solutions may look 
striking: (66) tends to 1 as c --* 0 and exhibits a maximum at larger c, while 
(44) smoothly increases from zero to infinity with decreasing concentration. 
This difference can be traced to the qualitative difference in the asymptotic 
behavior. When a = 0 ,  the solution at the origin decays as 
exp[-3(2c2rcZt)l/3], which becomes slower with decreasing c. Hence, in the 
c ~ 0  limit its temporal integral diverges. In contrast, when a r  the 
asymptotic decay is e x p [ -  a2t], which is independent of concentration and 
has a finite temporal integral. 

More physically, when a = 0, p(x, t lXo) is centered around Xo for all 
t~>0; hence, the number of times a stochastic trajectory returns to the 
origin Xo increases with t until it terminates at a trap. In contrast, when 
a r 0, the drift force carries p(x, t Ix0) away from the origin, only the boun- 
daries preventing it from escaping to infinity. When the distance between 
these boundaries (traps) increases above a certain value, this effect becomes 
dominant (over the diminishing trapping), and the number of returns to 
the origin decreases with decreasing concentration. 

60 

P- 40 V 

20 

0 
0. 

I I I I I I I 

0.02 0.04 
C 

Fig. 7. Mean residence time at the origin for one-dimensional  diffusion with r an d o m traps at 
a concentrat ion c = 0.01. Thick uper  curve = free diffusion (44). Thin lines below are for a = 
7.5.10 3m, m = 1 - 5 (top to bo t tom) ,  in (66). Numerical  integration in (66) was performed 
using 600 grid points for 0.1 ~< y ~< 120. 



556 Agmon 

4. D IFFUSION WITH R A N D O M  REFLECTORS 

A dual problem to that of diffusion with random traps is diffusion with 
random reflectors, where we simply replace the previously imposed absor- 
bing boundary conditions by reflecting boundary conditions. This may 
represent, for example, energy transfer in a lattice with random defects. The 
initial excitation does not decay but relaxes to equilibrium. The survival 
probability is unity throughout, but we can still ask about (P>. Similarly, 
the survival time is infinite, but the mean relaxation time is meaningful. (24) 
We solve this problem below for free diffusion, denoting all quantities by a 
superscript r (for "relaxation") and all previously calculated quantities (for 
random traps, Sec. 2) by a superscript t. 

The solution for free diffusion (1) in an interval (0, l) with reflecting 
boundary conditions 

@(x,  t) .~ @(x,  t) x=, 
~3x = o -  tx =0  (67) 

[instead of (2)], and the initial conditions of (3), is given [analogously to 
(8) and (9)] by 

lp~(x, t h Xo) = 1 + 2 ~ cos(j~x/l) cos(jTrxo/l) e x p [ -  (jn/l) 2 t] (68) 
j = l  

2 ~ t t  pr(x, t[ Xo) 

= ~, {exp[-(X-Xo+2jl)2/4t]+exp[-(X+Xo+2jl)Z/4t]}  (69) 
j =  - - ~  

From which it is immediately evident that 

p r = l - l  + pl (70) 

where l-1 is the equilibrium probability density. Finally 

<P~> = c +  <P'> (71) 

where (pt> is given by (26) and (30). After a transient decay period, the 
system reaches an equilibrium situation where the average return 
probability density is determined by the concentration. 

The relaxation time in the segment (0, l) is defined by (24~ 

;5 rr(x)=-I [pr(x, t[x)--1-1] dt (72) 
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From which it immediately follows that 

< r  r )  = < r ' )  = (3c) -1 (73) 

This is clear, since the transient behavior in both cases is the same; only the 
final equilibrium situation is different. 

The solution for a linear potential is not derived simply from the 
above results for free diffusion via the transformation (47): The reflecting 
boundary conditions (zero flux) now become "radiation" boundary con- 
ditions. One has to solve first for free diffusion with radiation boundary 
conditions at x = 0 and l. 

5. C O N C L U S I O N  

We have given an exact solution for one-dimensional diffusion with 
random traps and reflectors. We believe several points in our exposition to 
be novel: (a) the use of the method of images for these problems as a short- 
time solution; (b) the observation that with just a few terms the short-time 
solution connects smoothly with the long-time solution obtained by an 
eigenvalue expansion, when the integrals are evaluated numerically or by 
their complete asymptotic expansion (rather than by the saddle-point 
approximation alone). This conclusion should be checked on systems with 
higher dimensionality; (c) the full solution for the case of a constant field of 
force (linear potential) for ( Q ) ,  ( P ) ,  ( z ) ,  and ( T )  (as compared with 
Ref. ll(c), the long-time solution is derived in a simpler, more direct way); 
(d) the introduction of the mean residence time density at the origin, ( T ) ,  
in this context; (e)the discussion of diffusion with random reflectors. We 
believe this last model to have experimental significance, especially for 
relaxation processes in random media. 

A P P E N D I X  A 

We evalute some integrals needed in the sequel; fj(x) is defined in (19). 

I]exp [ - (x + ] = �89 ~ {erf[(j + 1)//x/~ ] - erf(jl/x/~)} (A1) fl)2/t dx 

e ~' erf(�89 + a x/T) dl = erf(a x/7) + j -~e  a2tfj(c q- ja) (A2) 

jo c 2 dl e c, dx erf[�89 + j l ) / x / t  + a ~ ]  

= e r f ( a x / ~ ) + e - a 2 ' { f j + l [ c + ( j + l ) a ] - f j ( c + j a ) }  (A3) 
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APPENDIX  B 

(c + 2aj) Io dle ~' fl dx e 2a~ erf[�89 + jl)/x/-t + a x /  t ] 

_ j +  1 {erf(a x/T) + j le a2tfj[c -1- (j-- 2)a] } 
c - 2a 

--c l{jerf(ax/7)+e a2'fj(c + ja)} (A4) 

Identity (50) can be derived from partial-fraction expansions of 
trigonometric and hyperbolic functions, as obtained from the residuum 
theorem of complex analysis. These expansions are listed in Sec. 1.42 of 
Ref. 23(b). From these we obtain 

k = l  [(2~-- l-Y2 ~--T-+-z2] : = ~ c ~  ~2) + z - l t a n h  (B1) 

(2)zl (2) $ 2 - 8  ,_, - = s i n h  2 + coth (B2) 
k = l  -I- 

Equation (50) reads 

2 Z  lcosh2( )- 2sinh (B3) 

The identity is easily established by inserting (B1) and (B2) in (B3). 
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